Improving Scalable, Automated Baremetal Malware Analysis

Adam Allred
Paul Royal
Agenda

• Modern Malware
 – Obfuscations, Server-side Polymorphism, Collection Volume
• Malware Analysis Detection
 – Commoditization, Popularity, Transparency
 – Detecting QEMU, VMware, KVM
• Baremetal Malware Analysis
 – Hardware, Technologies
• Improving Baremetal Malware Analysis
 – Reliability Testing
• Conclusion/Future Work
an introduction to

MODERN MALWARE
Modern Malware

• At the center of current threats on the Internet
 – Commodity botnets (spamming, DDOS, etc.)
 – Theft of financial information and intellectual property
 – Espionage and sabotage

• Used by criminals
 – Well-funded, large-scale operations

• Used by nation states
 – Effect political agenda
Malware Cont’d

• There is a pronounced need to understand malware behavior
 – Threat discovery and analysis
 – Compromise detection
 – Forensics and remediation

• Malware authors make analysis challenging
 – Various motivations
Malware Obfuscations

• Pictorial Overview

- Push EBP
- MOV EBP, ESP
- SUB ESP, 8
- CALL 00401170

```
Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
```

Program A

- Machine Code

- Encrypt/Compress/Transform

Program A’

- Transformed Machine Code (Appears as Data)

- <Unpack Code>

- ... (Appears as Data)

- Result: 38/39 (97.44%)

• Project ZeroPack

- File bifrose.exe received on 02.25.2009 18:41:57 (CET)
 Current status: finished
 Result: 38/39 (97.44%)

- File bifrose_zp.exe received on 02.25.2009 18:42:11 (CET)
 Current status: finished
 Result: 0/39 (0%)
Obfuscations Cont’d

• Server-side Polymorphism
 – Automate mutations

• When done professionally: Waledac
Why Automation?

• Vastly increased volume of samples
• GTISC averages > 100,000 new samples/day
 – Higher for commercial security organizations
• Volume makes manual analysis untenable
an overview of

MALWARE ANALYSIS DETECTION
Malware Analysis Detection

• Environment-aware Malware
 – Conficker
 • Checks for relocated LDT
 – TDL4
 • Checks for device emulation via WQL
 – Bredolab
 • Checks for device emulation via DeviceIoControl()
Detection Cont’d

- Analysis tool/environment detection is a standard, inexpensive option
Detection Cont’d

• In-Guest Tools
 – No higher privilege
 – Non-privileged side effects
 – Exception handling issues

• Reduced Privilege Guests (VMware, etc)
 – Non-privileged side effects

• Emulation (QEMU, Simics)
 – No identical instruction execution semantics
Detecting QEMU

- IRETD with 0x26 prefix

```c
#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

int seh_handler(struct _EXCEPTION_RECORD *exception_record,
    void *established_frame,
    struct _CONTEXT *context_record,
    void *dispatcher_context)
{
    printf("Malicious code here.\n");
    exit(0);
}

int main(int argc, char *argv[]) {
    unsigned int handler = (unsigned int) seh_handler;
    printf("Attempting QEMU detection.\n");

    __asm("movl %0, %%eax\n          pushl %%eax\n          "r" (handler): "%eax");

    __asm("pushl %fs:0\n          movl %esp, %fs:0\n          ");

    __asm(".byte 0x26, 0xcf\n          "movl %esp, %fs:0\n          ");

    return EXIT_SUCCESS;
}
```
Detecting VMware, KVM

- VMware
 - Older versions primarily use binary software translation
 - SYSRET treated as NOP when executed in ring 3
- KVM
 - Uses hardware virtualization extensions
 - Certain instructions cause VMExits
 - Older versions terminate with unhandled exit on guest execution of VMREAD
Why Transparency?

- Analysis environment detection commoditized, popular
- Detection vulnerability trend does not suggest decrease over time
- Certain types of detection vulnerabilities automatically discoverable
an introduction to

BAREMETAL MALWARE ANALYSIS
Baremetal Challenges

• Conceptual
 – Physicalizing virtual machine

• Scalability
 – Cost of hardware
 – Efficiency of processing

• Automation
 – Managing system state
 – Ensuring longevity of hardware
Baremetal Cluster Hardware (2012)

• Baremetal Controller
 – Supermicro 5016I-MTF
 • X3430 Processor, 8GB RAM, 4 x 1TB HDDs
 • Debian 6 “Squeeze”

• Baremetal Non-Virtual Machine (NVM)
 – Supermicro 5015A-PHF
 • Integrated Atom processor, 1GB RAM

• Cluster Networking
 – Cisco WS-C2960-24TC-S
 • 24 10/100Mb, 2 1Gb Ethernet ports
Baremetal Cluster Technologies (2012)

- Linux Device Mapper
 - Create Copy-on-Write (CoW) block device
- ATA-over-Ethernet (AoE)
 - Make CoW device available over network
- g Preboot eXecution Environment (gPXE)
 - Boot NVM into OS on network CoW device
- Intelligent Platform Management Interface (IPMI)
 - Manage NVM system state
NVMTrace

• Software controller for automated baremetal malware analysis
 – Executes each sample in its own sterile, isolated non-virtual machine

• Provides access to NVM disk contents and network traffic
 – Use with your favorite network traffic and disk forensic tools
Implementation Corner Cases

• System Clock
 – Sample can modify system time
 – Modify gPXE to set sane value, sync immediately prior to sample execution

• NVM PSU Lifetime
 – Turning NVM on, off hundreds of times each day can impact PSU longevity
 – Use resets instead
GTISC NVMTrace Deployment
GTISC Deployment Cont’d
evaluation and enhancement of

BAREMETAL MALWARE ANALYSIS
NVMTrace Reliability Testing

• Anecdotal observation indicated potential issue in sample processing
• Sought to verify by using a well-known set of samples that make use of the DNS
 – Count samples that make DNS queries
 – Make a change, reprocess set
• Accept changes that increase percentage the number of samples that query DNS
Observed Symptom

• Windows boot hang
 – Nondeterministic across nodes
• Manually reproducible
• ATA over Ethernet suspected
 – Problem occurred right after activation
ATA over Ethernet

• Simple (12 page specification)
 – TFTP-like connection
• Unreliable
 – No packet retransmission, checksumming
• Network analysis confirmed AoE traffic ceases at hang
 – Packet loss or corruption impedes node execution
iSCSI

• Proposed as replacement for AoE
 – Provides reliable transport via TCP

• Candidate implementation must handle atypical use
 – Constant iSCSI LUN add/remove
iSCSI Reliability Testing

• Evaluated several iSCSI implementation candidates that did not work
 – SCST, STGT, Open-iSCSI
• Eventually tried LIO, which did work
• Also tested AoE under Debian 7
 – No change in reliability
Results

• > 99% of samples in well-known set successfully processed using LIO
 – Verified via multiple rounds of testing
• Additional testing with separate, ~200,000 sample dataset
 – Represented 24 hours of real-world collection
 – Virtualization-based processing results used as reference
 – Results reaffirm > 99% success rate
• Subsequent stable production use for months
Conclusion

• Analysis environment detection commoditized, increasingly popular
 – Virtualization still a valuable analysis tool, but can be supplemented
• Advances in hardware make scalable baremetal malware analysis possible
• Baremetal analysis systems must be carefully engineered for reliability
Future Work

- Increase cluster density via Supermicro MicroClouds
 - Yields three-fold increase in processing density
- Chainload into i/g PXE via PXE
 - Remove need for read-only USB devices
- Disk Forensics
 - Examine controller-NVM iSCSI network traffic
 - Record disk-level events as they occur
Acknowledgements

• Artem Dinaburg
 – Environment detection

• Robert Edmonds
 – System architecture

• David Dagon
 – System concept
Questions?

NVMTrace Source Code, Build Instructions
http://code.google.com/p/nvmtrace