Security: The Internet of Things (IoT)
Internet of Things:

A network of internet-connected objects able to collect and exchange data using embedded sensors.
As the number of connected devices grows to more than 50 billion by 2020, the IoT will provide an unprecedented expansion of exposure to new threat vectors and increased attack surfaces.
IoT threats gain access through the broader Radio Frequency (RF) spectrum.

It’s not just corporate WiFi that presents a threat; it’s any device enabled by Bluetooth, NFC, RFID, Z-Wave, ZigBee, 2G/3G/4G cellular protocols and a rapidly growing list of others.
IoT at a glance
Problem 1: Many IoT devices connected to the RF spectrum are using protocols not on the wired network which means enterprises can’t detect, inspect and fix vulnerabilities that arise in their unique IoT ecosystem.
Problem 2: Many of these protocols were meant for a single use including IoT-enabled light bulbs, wireless keyboards, mice, and industrial controls like pressure sensors and water gauges.
Problem 3: In most instances, IoT devices and the way they implement IoT protocols don’t support security patches – even when a manufacturer discovers a vulnerability.
Pretty simple diagram, but by now most security experts can secure these ports and protocols!
(Wired) Security

- Intrusion detection
- Exfiltration detection
- APT detection
- Next gen firewalls
- SIEMs

Huge Dollars Spent to Monitor Internet Connections
Wireless Security

Meanwhile:

Multiple Gbps are Leaving via Radio Signals

- Government phones
- Personal phones
- Hotspots
- Rogue cell towers
- Thermostats
- Sensors
- IoT
-

NOBODY IS WATCHING THE RADIO SIGNALS!
What are the Threats?

Example 1: Inexpensive Wireless Bugs use various protocols to steal corporate information

1545 listings for “GSM bug” on eBay

1227 listings for “GSM bug” on Amazon

1189 listings for “GSM bug” on Alibaba
Example 2: Rogue Cell Towers 2014

- Rogue Cell Tower:
 - Impersonates Telco carrier tower
 - Cell phones are often promiscuous with their connections and pair with rogue cell towers without checking
 - THREAT: Enables traffic sniffing and man-in-the-middle attacks

- BUT in 2014 “Rogue Cell Towers”:
 - Confined to “Stingray” devices used by Law Enforcement, Military and Intelligence
 - OR a Science Project

The StingRay is an IMSI-catcher, a controversial cellular phone surveillance device
Example 3: Rogue Cell Towers 2016

• Commoditized, commercial units on sale

• Can be hidden in plain sight, e.g. inside an office printer

• Improved Technologies Enable:

 - DIY cell tower w/Open Source + Software Defined Radios

 - Range Networks sells Cell Tower hardware unit w/software installed for under $5k

View from printer cartridge bay, modified to host 2 omnidirectional antennae (TX and RX) fed by SMA cable to BladeRF
Threat Context

• Adversaries will only use wireless threats when there is a specific Return-On-Investment (ROI) compared to other methods.

• Scenarios where the ROI is lower than other options will inhibit its selection in any given case.
Threat Context

Areas of Utility for advanced wireless attacks include:

- Sustaining access to a target
- Re-establishing access to a target
- Circumventing established security choke-points
- *Degree of repeatability*
- Invisible pivoting from one device to another via wireless interfaces
Threat Context

Risk Areas for the attacker

• Physical Access
• Upfront investment in new tactics
• Time required to execute
• Inconsistency in target environment
• Repeatability
Example 4: From DefCon 2017

Control your STB with your voice!

Wireless instead of IR!

Motion activated lights!

TI CC2530 with RF4CE stack

• Everyday devices like TV remote controls can be turned into listening devices that can exfiltrate data
Example 5: Wireless Keyboards & Mice

MouseJack, KeySniffer, KeyJack

MOUSEJACK
- Inject keystrokes from **500ft** away
- Microsoft, Dell, Logitech, Lenovo, Toshibaessentially all wireless mice with dongles
- More than 1 billion dongles vulnerable

KEYSNIFFER
- Record ALL your keystrokes as you type them
- Reveals credit cards, username and passwords and all your sensitive, private and confidential information
A Word of Warning:

section 191(1)

Possession, etc.

191(1) Every one who possesses, sells or purchases any electro-magnetic, acoustic, mechanical or other device or any component thereof knowing that the design thereof renders it primarily useful for surreptitious interception of private communications is guilty of an indictable offence and liable to imprisonment for a term not exceeding two years.
RF Hacks in the News
Researchers hack GSM mobile calls using $9 handsets
Researchers have demonstrated an alarmingly simple technique for eavesdropping on individual GSM mobile calls without the need to use expensive equipment – January 3, 2011

Researchers Hack Air-Gapped Computer With Simple Cell Phone
Researchers have devised a new method for stealing data—using the GSM network, electromagnetic waves and a basic low-end mobile phone – July 27, 2015

Some SIM cards can be hacked in about 2 minutes with a pair of text messages
Every GSM phone needs a SIM card, and you’d think such a ubiquitous standard would be immune to any hijack attempts. Evidently not – July 22, 2015
Hacker Develops Device to Surf the Internet Anonymously

ProxyGambit is a $235 device that allows people to access an Internet connection from anywhere in the world without revealing their true location or IP address – July 15, 2015

Big Vulnerability in Hotel Wi-Fi Router Puts Guests at Risk

Researchers have discovered a vulnerability in the systems, which would allow an attacker to distribute malware to guests, monitor and record data sent over the network, and even possibly gain access to the hotel’s reservation and keycard systems – March 26, 2015

Hackers show off long-distance Wi-Fi radio proxy at DEF CON

The device uses the 900MHz band, but hides the data in the background radio noise – August 10, 2015

Hacker Develops Device to Surf the Internet Anonymously

ProxyGambit is a $235 device that allows people to access an Internet connection from anywhere in the world without revealing their true location or IP address – July 15, 2015
Bluetooth privacy is mostly ignored, so you're beaming yourself to the world
The popular BLE beacon protocol isn't just a privacy risk up close – it can spy on your phone's or wearable's movements and make you trackable – July 15, 2014

Android smartwatches vulnerable to snooping
Bluetooth communications between smartphones and smartwatches running Android are vulnerable to brute-force attacks that can decipher messages sent between the devices into plaintext– December 11, 2014

Bluetooth and its Inherent Security Issues
Bluetooth flaw in native security can subject a user to threat vectors: default configuration, theft and loss, eavesdropping and impersonation, person-in-the-middle attack, piconet/service mapping, and denial-of-service attacks
Researchers find major security flaw with ZigBee smart home devices. By making it easier to have smart home devices talk to each other, many companies also open up a major vulnerability with ZigBee that could allow hackers to control your smart devices - August 7, 2015

Philips Hue Light Bulbs Are Highly Hackable. If you're the proud owner of some smart Philips Hue light bulbs, watch out for blackouts—because the bulbs seem to be susceptible to malicious attacks according to new research - August 14, 2013

Researchers exploit ZigBee security flaws that compromise security of smart homes. Researchers at Black Hat and Def Con warned about security flaws in Internet of Things devices using the ZigBee protocol - August 11, 2015
Simple 'open sesame' to unlock your HOME by radiowave replay attacks are the most basic of penetrative techniques and any modern system should be immune to them, but for some reason the tested Z-Wave sensor wasn't.

How Your Security System Could Be Hacked To Spy On You Hacker could track when people were opening and closing windows and doors using cheap SDR and interfere with transmissions (our researcher)

Honey I’m Home - Hacking Z-Wave Home Automation Systems Z-Wave protocol is gaining momentum against the Zigbee protocol. This is partly due to a faster, and somewhat simpler, development process – August 2013
'Extremely chatty' Samsung smart TVs pose major security risk to government, healthcare and energy companies Samsung smart TVs "incessantly" communicate with a server which uses an untrusted security certificate, opening up the potential for hackers to target these devices.

Hacking, Surveilling, and Deceiving Victims on Smart TV Smart TVs have many hardware devices which, if remotely controlled, means bad guys can spy without you knowing. It is possible to make Smart TVs monitor you 24/7 even though users turn off their TV – August 2013

Alarm bells ring for Internet of Things after smart TV hack Two researchers from Colombia University in the US have found that millions of internet-connected TVs could be taken over in a man-in-the-middle attack - June 10, 2014
The August Smart Lock Shows Why You Should Stick With Dumb Keys
So what explains the tech industry’s infatuation with smart locks that can unlock your home using a smartphone? A spate of smart locks have hit crowdfunding sites like Kickstarter – October 14, 2014

Millions of Kwikset Smartkey Locks Vulnerable to Hacking
Researchers have been cracking locks at Def Con for years, demonstrating the ability to defeat high-security electronic locks used at the White House and other government offices – August 3, 2013

This ‘Smart’ Lock May Have Dangerously Dumb Security
Some of Sesame’s features are perfect examples of how brilliant ideas can fail to take security into account. Of all the dumb ideas coming out of the Internet of Things, these features may be the dumbest yet – March 4, 2015
Recent Bank Cyber Attacks Originated From Hacked Data Centers, Not Large Botnet The majority of the banking attack traffic does not appear to have been generated by client bots, but rather from compromised servers in data centers – October 5, 2012

Hackers exploit SCADA holes to take full control of critical infrastructure According to three different reports from experts, it appears that critical infrastructure is a ripe target that is pretty sweet for attackers – January 15, 2014

Five Ways To (Physically) Hack A Data Center Many data centers contain easy-to-exploit physical vulnerabilities that don't require hacking into the network – May 17, 2010

Hackers exploit SCADA holes to take full control of critical infrastructure According to three different reports from experts, it appears that critical infrastructure is a ripe target that is pretty sweet for attackers – January 15, 2014

Hackers exploit SCADA holes to take full control of critical infrastructure According to three different reports from experts, it appears that critical infrastructure is a ripe target that is pretty sweet for attackers – January 15, 2014

Hackers exploit SCADA holes to take full control of critical infrastructure According to three different reports from experts, it appears that critical infrastructure is a ripe target that is pretty sweet for attackers – January 15, 2014
A Creepy Website Is Streaming From 73,000 Private Security Cameras
A website has collected the streaming footage from over 73,000 IP cameras whose owners haven't changed their default passwords – November 6, 2014

Hacks to turn your wireless IP surveillance cameras against you
Researchers showed how to exploit the devices in "To Watch or Be Watched: Turning Your Surveillance Camera Against You" and released a tool to automate attacks – April 14, 2013

Popular Surveillance Cameras Open to Hackers, Researchers Say
Three of the most popular brands of closed-circuit surveillance cameras are sold with remote internet access enabled by default, and with weak password security – May 12, 2012
Is Your Cordless Phone Being Hacked? If you still have an early analog cordless phone, then your conversations can potentially be easily intercepted by anyone with a radio scanner available at most local hobby stores – March 20, 2014

DECT wireless eavesdropping made easy A new attack against phones based on DECT can be carried out cheaply using off-the-shelf kit, together with a little know-how – December 31, 2008

DECT phones and POS terminals are vulnerable security experts have built a cheap laptop-based sniffer that can break into cordless phones, debit card terminals and security door mechanisms – January 5, 2009
Attacks Are Moving to Radio Frequency

DEFCON RF-Based Hack Presentations
Attack Technologies for Modern Threat Agents
Software Defined Radio 10 Years Ago

$100K+ for an SDR (Software Defined Radio)
Today’s Software Defined Radios (Receivers and Transmitters)

Providing Threat Agents an RF Platform for Attack

$20 SDRs
put basic radio hacking in the hands of every teenager

$1000 SDRs
put a precise weapon in the hands of every professional Threat Agent
Software For Software Defined Radios
Enabling Threat Agents to Develop Attack Applications

SDR# (SDRSharp)
Baudline
Inspectrum
SDR-Radio
Communications System Toolbox
CubicSDR
THE BIG SECRET

For the Security of Internet of Things:

It’s not about the “Things”, it’s about the Radios!
Example: Cell Phones

Samsung S7 has 9 Radios

- NFC
- Wireless Power
- WiFi a/b/g/n
- BTLE
- BT
- LTE
- GPS
- GSM
- UMTS

RF bands

<table>
<thead>
<tr>
<th>Waveband (GHz)</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>2.4</th>
<th>2.5</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G (GSM)</td>
<td></td>
</tr>
<tr>
<td>3G</td>
<td></td>
</tr>
<tr>
<td>LTE</td>
<td></td>
</tr>
</tbody>
</table>

- NFC = 13MHz
- GPS = 1575MHz
- BT/Wifi = 2400MHz

- Avago AFEM-9040 multiband multimode module
- EPCOS D5275 antenna switch module
- EPCOS D5287 antenna switch module
- Murata FAJ15 front end module
- Murata KM5D18098 Wi-Fi module
- Qorvo QM78064 high band RF fusion module
- Qorvo TQF6260 PA duplexer
- Qorvo QM63001A diversity receive module
- Qualcomm QFE3100 envelope tracker
- Qualcomm QFE2550 digital tuner
- Qualcomm WTR4905 transceiver
- Qualcomm WTR3925 transceiver
This $70 home automation hub has 6 radios!

- **Lutron** (433MHz)
- **ZigBee** (2400MHz)
- **Kidde** (433MHz)
- **BT/Wifi** (2400/5800 MHz)
- **Z-Wave** (915MHz)
- **ZigBee** (2400MHz)
Current IoT Attack Focus.

1. Many competing standards for low-range, medium-low data rate hinder growth for many IoT applications.
 - Interoperability missing
 - Consortia wars might be emerging
 - Additional incompatibilities in higher communication layers, e.g., 6LoWPAN vs ZigBee

2. Standard white space for low-data-rate, low-power, high-range applications such as smart grid.
 - Wi-Fi and LTE have high power consumption
 - Alternatives with low power and wide range (e.g., LTE Cat. 0, 802.11ah, Sigfox, and OnRamp) are in very early stages and compete against each other
Using a Drone to Locate ZigBee Protocol – based IoT Devices

The First Step Of the APT is Always Reconnaissance!
Today’s Connected Device Threat
The “Ready for Radio” Problem

RF-enabled devices are pervasive, do not seek permission to enter

Example

Not yet configured ZigBee Network

Bluetooth keyboard with a vulnerability
We Need a Security Methodology for IoT:

Proposal:

- Detect
- Analyze
- Respond
Who Are the Radio Experts?
KEY TECHNOLOGIES

Detect, Analyze, Locate, Respond

• **DETECT**: Use **Collaborative SDR-based Sensors** to quickly and accurately scan the spectrum for emitters. Utilizing sophisticated algorithms and techniques to intelligently make distributed decisions about whether to observe a known signal versus scanning another part of the spectrum to find unknown signals.

• **ANALYZE**: Use **Device Fingerprinting** to detect and identify Friend/Foe/Unknown in an enterprise’s airspace. Leverage detected information to resolve and produce situational awareness of RF emitters and RF **Personas**.

• **LOCATE**: Localize all emitters in the corporate airspace. Passively localize any emitter within ‘several meters’ of accuracy, enabling geofencing of emitters to produce localization-based alerts for sensitive areas.

• **RESPOND**: Provide **Human readable** alerts and reports to SOC for appropriate response. Might want to consider enhanced tools for first responders.
About the RF Persona

- Convergence of physical and cyber security
- Device identification and linking to personnel
- Integration with facility access systems is important
Detect:
The Necessary Essential Frequency Bands Only

Top Protocols by Front End

- #1: BT, BTLE, Mouse/Keyboard, Zigbee
- #2: White Space Protocols
- #3: Cellular (LTE-GSM)
- #4: DECT
- #5: Push-to-Talk, Z-Wave, 900MHz phones, Cellular, Key Fobs, Alarm Systems
- W: WiFi (802.11abgn/ac); 2.4GHz, 3.6GHz, 5GHz

Detect:
The Necessary Essential Frequency Bands Only
Scalable Detection – For ‘Enterprise’ Deployments

Building

Floorplan 1

Floorplan 2

Analytics/Machine Learning

API

GUI
Analyze: The Multi Protocol IoT environment
Analyze:
Analyze: Localization of Radios Inside the Environment

Facility Propagation Inference

Error Analysis

Error Filtering/Smoothing

Emitter Location Estimates

Algorithms and Logic

Position from Previous Estimates

Movement model (side information about how people move)

Cross Validation

New RSSIs

Position for Next Estimate
1. AoA and TDOA are not suitable for inside a facility.

2. PoA works well, can be highly accurate, but is extremely complex, requires highly precise instrumentation and timing. Demands complex installation requirements. Very expensive for enterprise deployments due to needed additional infrastructure.

3. ‘Localization’ is not as precise as PoA, but is ‘good enough’ and provides reasonable repeated results, every time, all the time, with a ‘plug and play deployment’ process.
Analyze: RF Persona Creation, Localization

Date Range: Dec 23 - Jan 12

Single Day, Specific Time: Dec 28, 12pm
Analyze: A Single Persona and Associated Devices
Analyze: Know all the Emitters in Your Environment
Respond: Automated Alerts for Critical Events

Alerts (1)

<table>
<thead>
<tr>
<th>ALERT</th>
<th>DESCRIPTION</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 Bluetooth Internet Access</td>
<td>A device is now offering internet access over Bluetooth.</td>
<td>Aug 15th - 5:45:55 pm</td>
</tr>
</tbody>
</table>

Raw Events (63)

<table>
<thead>
<tr>
<th>EVENT</th>
<th>LOCATION</th>
<th>PROTOCOL</th>
<th>START TIME</th>
<th>END TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICESEEN</td>
<td>San Francisco, Suite 510</td>
<td>Bluetooth</td>
<td>Aug 16th - 5:46:00 pm</td>
<td>Aug 16th - 7:38:00 pm</td>
</tr>
<tr>
<td>DEVICESEEN</td>
<td>San Francisco, Suite 510</td>
<td>Bluetooth</td>
<td>Aug 15th - 5:38:00 pm</td>
<td>Aug 15th - 7:31:00 pm</td>
</tr>
</tbody>
</table>
Remote control settings

Model: Cassandra SJ11A
Condition: ECM (jamming). Error! Instrument has not I2C interface
Respond: Reporting

It's what we can do now (legally). Please don't consider jamming!
Classified Facilities

- Enforce No Cell Phone policy
- Enforce No Wireless Infrastructure policy
 - ZigBee enabled power management systems
 - Z-Wave enable HVAC system
 - Wireless security systems
 - Wireless lighting systems
DIGITAL FORCE PROTECTION

- On-demand low-cost red teaming of an environment to detect unwanted wireless threats and attackers
- Could be deployed to temporary operating facilities like ‘Corporate Retreat’ conference facilities
- Detect wireless devices that enter and leave the room
- Detect wireless vulnerable devices
- Detect wireless surveillance devices
CRITICAL INFRASTRUCTURE DEFENSE

- Detection of vulnerable or compromised critical infrastructure wireless C2 systems
- Detection of active wireless attack on critical infrastructure
What Vulnerable IoT Devices are in Your Organization?
CONTACT

John Pavelich

Spectral Guard Inc

613-294-1068